Statistics (STAT)

STAT 120 —  Statistical Reasoning Course count: 1 

This course presents the basic concepts of statistics and data analysis in a non-technical way. Topics include graphical methods of summarizing data, descriptive statistics, and methods of statistical inference. STAT 120 is a terminal, introductory course intended for students who are not interested in pursuing mathematics, economics, biology, psychology, sociology, or the health professions.

Students who have taken MATH 135, MATH 220, BIOL 275, ECON 249, PSYC 200, SOCL 226 may not enroll in this class.

GPA units: 1

Common Area: Mathematical Science

STAT 220 —  Statistics Course count: 1 

This course presents statistics intended for students aspiring to the health professions. Topics include sampling strategies and experimental design, numerical and graphical methods of describing data, basic concepts in probability, discrete and continuous probability distributions, sampling distributions, confidence intervals, hypothesis testing and simple linear regression. Statistics is a part of the health professions curriculum, but some majors at the College offer their own statistics courses that are tailored to their respective disciplines. Students majoring in mathematics, economics, biology, psychology and sociology should take the statistics course within their major. Health profession students are advised to wait and take the statistics course in their major, should it offer one. Otherwise, such students should take STAT 220 sometime after their first year at the College.

Prerequisite: MATH133 ,134,135, or 136 or equivalent.Students who have taken ECON 249, BIOL 275, PSYC 200 or Social Statistics or have credit for AP Statistics may not enroll in this course. ACCT, ECON, PSYC or SOCL majors may not enroll in STAT 220.

GPA units: 1

Typically Offered: Fall, Spring

STAT 231 —  Linear Models Course count: 1 

TThis course provides a thorough examination of the theory and practice of ordinary least squares (OLS) regression modeling. Model interpretation and a conceptual understanding of confounding, mediation, and effect modification are emphasized. Specific topics include analysis of variance (ANOVA), derivation of parameter estimates, correlation, prediction, dummy variables, contrasts, testing general hypotheses, analysis of covariance (ANCOVA), multicollinearity, regression diagnostics, techniques for handling model misspecification (incorrect functional form, heteroskedasticity), and model-building strategies. Students will work extensively with data sets and the R statistical software package.

Prerequisite: Math 133,or Math 134 or Math135 or Math 136 and Biol 275 or Econ 249 or Psyc 200 or Socl 226 or Stat 220 or Stat 376. Students who have earned credit for Econ 314 cannot enroll in Stat 231.

GPA units: 1

Typically Offered: Fall

STAT 232 —  Categorical Data Analysis Course count: 1 

This course provides a focused introduction to the theory and practice of categorical data analysis. Model interpretation and conceptual understanding will be emphasized. Specific course topics include the chi-square test for independence, Fisher's exact test, logistic regression, multinomial logistic regression, prediction, dummy variables, contrasts, testing general hypotheses, effect modification and confounding, assessing fit, and model-building strategies. Students will work extensively with data sets and the R statistical software package.

Prerequisite: STAT 231 or ECON 314

GPA units: 1

Typically Offered: Spring

STAT 375 —  Probability Theory Course count: 1 

An introduction to the theory and applications of probability. Includes both continuous and discrete distributions, conditional probability and Bayes Theorem, random variables and expected values, joint distributions of several random variables, functions of random variables, and the Central Limit Theorem.

Prerequisite: MATH 241.

GPA units: 1

Typically Offered: Fall, Spring

STAT 376 —  Mathematical Statistics Course count: 1 

A course in the theory and applications of statistics. Topics include maximum likelihood estimation, the sampling distributions of estimators, confidence intervals, hypothesis testing, regression analysis, and an introduction to the analysis of variance.

Prerequisite: STAT 375

GPA units: 1

Typically Offered: Alternate Years

STAT 380 —  Statistical Computing Course count: 1 

This course covers statistical methods that would not be possible without the advances made in modern computing over the last 25-30 years. Specifically, these are simulation and Monte Carlo techniques that are appropriate where statistical theory does not yet provide a solution. Each of the statistical methods covered is computationally intensive and therefore requires a computer to arrive at a solution. Topics include techniques for simulating of random variables, Bayesian statistics, Markov chains, the Metropolis-Hastings algorithm, MCMC and Gibbs Sampling, mixture models, and classification schemes.

Prerequisite: CSCI 131 and STAT 220 or STAT 375

GPA units: 1

Typically Offered: Alternate Years

STAT 381 —  Statistical Learning Course count: 1 

This course is an introduction to the main principles of supervised and unsupervised machine learning within the context of data analytics. Methods include linear regression, logistic regression, K-nearest neighbors, and discriminant analysis. Resampling methods such as cross-validation and bootstrapping, as well as model selection and regularization techniques are discussed. Non-parametric methods, including classification and regression trees (CART), boosting, bagging, and random forests are presented. Unsupervised learning methods focus on principal components analysis, K-mean, and hierarchical clustering. The R statistical computing package is used extensively.

Prerequisite: STAT 231 or ECON 314

GPA units: 1

Typically Offered: Alternate Years